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Introduction

In recent years, quantum, or more generally, non-abelian extensions of various integrable
systems have acquired considerable attention. It was motivated by problematics and
needs of modern quantum physics as well as by a natural attempts of mathematicians to
extend and to generalize the “classical” integrable structures and systems. In particular,
the Painlevé transcendents provide a good example of this phenomena. Some examples of
integrable non-abelian Painlevé systems are contained in [Kaw15], [BS98], [AS21], [BS22],
[RR10], [Adl20], [AK22]. Some of them were found using the existence of special isomon-
odromy representations or the Painlevé-Kovalevskaya test while several of the systems
have been derived from integrable PDEs and lattices by reductions.

The famous Painlevé equations have being studied in various branches of mathemat-
ics and mathematical physics and have important properties. It is natural to generalize
these properties to the non-abelian case. Here we are interested in non-abelian general-
izations of the well-known monodromy surfaces related to different linearizations of the
non-commutative analogs for the second Painlevé equation, obtained in [AS21] and labeled
by P0

2, P
1
2, and P2

2. Below we will briefly present the results from the paper [Bob23]

Setting

We would like to work with an algebra Â formed by the generators x±1
1 , . . . , x±1

N that
is a non-abelian generalization of the Laurent polynomials in the variables x1, . . . , xN

depending on the variables tl, l ∈ N. All elements tl belong to a center Z(Â) of the
algebra.
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One can define a derivation dtl on Â. Note that for any element F ∈ Â, the element
dtl(F ) is uniquely determined by the Leibniz rule. We use the notation “ ′” instead of dz.

Consider the system of non-abelian ODEs

dtl(xk) = Fk, Fk ∈ Â, k = 1, . . . , N. (1)

If for some k the element Fk depends on tl explicitly, the system is non-autonomous,
otherwise – autonomous.

Results

In the commutative case, the P2 equation has two monodromy surfaces of the FN-type
and JM-types. The corresponding linearizations are related to each other by a generalized
Laplace transformation [JKT09], while the FN-type and HTW-type pairs are just gauge-
equivalent [KH99] by the Fabry-type map.

We extend the list of the HTW-type pairs by those obtained in the paper [BS22] by
the limiting transitions of the corresponding Lax pairs for the matrix P4-type systems.
They are given by the HTW0

2 pair for P
0
2, HTW’12 and HTW1

2 for P
1
2, and HTW2

2 for the P
2
2

system. To derive the FN-type pairs from them, one is able to use the same Fabry-type
map.

Note that the generalized Laplace transformation can be also extended to the non-
abelian case, if we assume that one is able to eliminate terms which arise from the
integration-by-parts. But, actually, that is an extra problem to prove that such a contour
can be chosen. We leave this issue for a further research. Let all spectral parameters1 be
elements of Z(Â).

Proposition 1. Let functions W (µ, z) and Y (λ, z) be solutions of a linear problem of the
form {

∂λΦ(λ, z) = A(λ, z) Φ(λ, z),

∂zΦ(λ, z) = B(λ, z) Φ(λ, z)
(2)

of the HTW-type and JM-type, respectively. Then the HTW-type pair is equivalent to the
JM-type pair by a non-abelian analog of the generalized Laplace transformation:

W (µ, z) =

∫
L

eλµ Y (λ, z) dλ. (3)

Thanks to the proposition above, we suggest a method how to construct in the non-
abelian case the JM-type pairs from the HTW-pairs. It turns out that the P0

2 system

1λ, µ, ζ.
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has a polynomial JM-type pair, the JM0
2 pair, which can be generalized to a fully non-

commutative case. The P1
2 system has polynomial and non-polynomial JM-type pairs

(pairs JM’12 and JM1
2, respectively). In the case of the P2

2 system, the JM-pair is degen-
erate2 (see the JM2

2 pair). As a result, we present for each of the non-abelian P2 systems
linearizations of the HTW, FN, and JM types.

Proposition 2. The non-abelian P0
2, P

1
2, and P2

2 systems possess linearizations of the
HTW, FN, and JM types.

To proceed to the non-abelian monodromy surfaces, we need to present a formal
solution near a singular point. The following proposition is derived for this purpose.

Proposition 3. Set r ≥ 03 and λ ∈ Z(Â). Let us consider n × n-matrices A(λ), F (λ),
D(λ), T (λ) of the form

A(λ) =
∑
k≥−r

Akλ
−k−1, A−r = diag(α1, . . . , αn), αi ̸= αj, i ̸= j, (4)

F (λ) = I+
∑
k≥1

Fkλ
−k, D(λ) = I+

∑
k≥1

Dkλ
−k, ∂λT (λ) =

0∑
k=−r

Tkλ
−k−1, (5)

where

(a) A(λ) ∈ Matn(Â) and A−r ∈ Matn(Z(Â));

(b) Fk ∈ Matn(Â), k ≥ 1, are off-diagonal matrices;

(c) Dk ∈ Matn(Â), k ≥ 1, are diagonal matrices;

(d) Tk ∈ Matn(Z(Â)), k = −r, . . . , 1, and T0 ∈ Matn(Â) are both diagonal matrices;

and suppose that

(e) the operator (k I+ adT0) : Matn(Â) → Matn(Â), k ≥ 1, is invertible.

Then the system

∂λΦ(λ) = A(λ) Φ(λ) (6)

admits a unique4 formal solution near an irregular singular point λ = ∞ that can be
written as

Φform(λ) = F (λ)D(λ) exp

(
r∑

k=1

1
k
T−kλ

k + ln(λ) T0

)
as λ → ∞. (7)

2We follow the terminology suggested in [JKT07], [JKT09].
3r is called the Poincaré rank of an irregular singular point. When r = 0, the singular point is

Fuchsian.
4Up to a conjugation by a non-singular matrix G ∈ Matn(Â).
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The proposition generalizes Proposition 2.2 in [JM81] to the non-commutative case,
whose particular case was discussed in the paper [BCR18]. As a result, the formal solutions
of the HTW- and JM-types near infinity were constructed.

Regarding the case of the P0
2 system, the monodromy surfaces related to the FN0

2 and
JM0

2 pairs are given in the following

Proposition 4. Let xi, i = 1, 2, 3, and q belong to Â, and α, θ ∈ C. Then the monodromy
surfaces related to the FN0

2 and JM0
2 pairs are given by the equations

x1 x2 x3 + x1 + x2 + x3 − 2 sin(π θ) q−1 = 0, (8)

x1 x2 x3 − x1 − x2 (α q2)− x3 + (1 + α) q2 = 0, (9)

respectively.

In the commutative setting, q = 1 and, thus, the relations above become the well-
known affine cubics for the second Painlevé equation. Note also that in the commutative
case these equations are equivalent by a simple scaling that cannot be generalized to
the non-abelian setting. Regarding the remaining systems P1

2 and P2
2, the monodromy

data are not isomonodromic and, thus, we cannot parameterize their solutions by the
Stokes multipliers. But, in fact, one can ask about a gauge-transformation that makes
the monodromy data isomonodromic. As far as we know, such a transformation does not
exist.
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