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Introduction

In recent years, quantum, or more generally, non-abelian extensions of various integrable
systems have acquired considerable attention. It was motivated by problematics and
needs of modern quantum physics as well as by a natural attempts of mathematicians to
extend and to generalize the “classical” integrable structures and systems. In particular,
the Painlevé transcendents provide a good example of this phenomena. Some examples of
integrable non-abelian Painlevé systems are contained in [Kaw15], [BS9§|, [AS21], [BS22],
[RR10], [AdI20], [AK22]. Some of them were found using the existence of special isomon-
odromy representations or the Painlevé-Kovalevskaya test while several of the systems
have been derived from integrable PDEs and lattices by reductions.

The famous Painlevé equations have being studied in various branches of mathemat-
ics and mathematical physics and have important properties. It is natural to generalize
these properties to the non-abelian case. Here we are interested in non-abelian general-
izations of the well-known monodromy surfaces related to different linearizations of the
non-commutative analogs for the second Painlevé equation, obtained in [AS21] and labeled
by PY, P3, and P3. Below we will briefly present the results from the paper [Bob23]

Setting
We would like to work with an algebra A formed by the generators zi', ..., xﬁl that
is a non-abelian generalization of the Laurent polynomials in the variables x1, ..., xx

depending on the variables #;, [ € N. All elements ¢; belong to a center Z(A) of the
algebra.



One can define a derivation d;, on A. Note that for any element F' € A, the element
dy,(F) is uniquely determined by the Leibniz rule. We use the notation “ " instead of d..
Consider the system of non-abelian ODEs

dy,(zy) = Fp, Fy € A, k=1,...,N. (1)

If for some k the element Fj depends on t; explicitly, the system is non-autonomous,
otherwise — autonomous.

Results

In the commutative case, the Py equation has two monodromy surfaces of the FN-type
and JM-types. The corresponding linearizations are related to each other by a generalized
Laplace transformation [JKT09], while the FN-type and HTW-type pairs are just gauge-
equivalent [KH99] by the Fabry-type map.

We extend the list of the HTW-type pairs by those obtained in the paper [BS22] by
the limiting transitions of the corresponding Lax pairs for the matrix P4-type systems.
They are given by the HTWY pair for PY, HTW’} and HTW3 for P}, and HTW?3 for the P3
system. To derive the FN-type pairs from them, one is able to use the same Fabry-type
map.

Note that the generalized Laplace transformation can be also extended to the non-
abelian case, if we assume that one is able to eliminate terms which arise from the
integration-by-parts. But, actually, that is an extra problem to prove that such a contour
can be chosen. We leave this issue for a further research. Let all spectral parametersﬂ be

~

elements of Z(A).

Proposition 1. Let functions W (p, z) and Y (X, z) be solutions of a linear problem of the
form

AP(N, z) = A\ 2)P() 2), )
{ 0.2\, z) = B(\2)P(Nz2) ?

of the HTW-type and JM-type, respectively. Then the HT'W-type pair is equivalent to the
JM-type pair by a non-abelian analog of the generalized Laplace transformation:

Wiy, z) = /L MY (N, 2) dA. (3)

Thanks to the proposition above, we suggest a method how to construct in the non-
abelian case the JM-type pairs from the HT'W-pairs. It turns out that the Pg system

"\ p, €




has a polynomial JM-type pair, the JMJ pair, which can be generalized to a fully non-
commutative case. The P} system has polynomial and non-polynomial JM-type pairs
(pairs JM’; and JM3, respectively). In the case of the P system, the JM-pair is degen-
erat (see the JM3 pair). As a result, we present for each of the non-abelian P, systems
linearizations of the HTW, FN, and JM types.

Proposition 2. The non-abelian Py, P}, and P3 systems possess linearizations of the
HTW, FN, and JM types.

To proceed to the non-abelian monodromy surfaces, we need to present a formal
solution near a singular point. The following proposition is derived for this purpose.

~

Proposition 3. Set r > O°| and A € Z(A). Let us consider n x n-matrices A(\), F(X),
D(X), T(X\) of the form

A()\) = Z Ak)\_k_la A—r = dia'g(ab ce 7an)a o7} 7& aj, i 7& ja (4)
k>—r
0

FN)=I+Y FAF* DN =I+> DX T\ =Y Tiax*, (5)

k>1 k>1 ke=—r
where
(a) A(\) € Mat,(A) and A_, € Mat,(Z(A));
(b) Fi € Mat,(A), k> 1, are off-diagonal matrices;
(c
(d

) Dy € Mat,(A), k> 1, are diagonal matrices;
) T € Mat,(Z(A)), k= —r,...,1, and Ty € Mat,(A) are both diagonal matrices;
and suppose that

(e) the operator (kI+ adg,) : Mat, (A) — Mat, (A), k > 1, is invertible.

Then the system
HhP(A) = A(A) (A) (6)

admits a um’queﬂ formal solution near an irregular singular point X = oo that can be
written as

k=1
2We follow the terminology suggested in [JKT07], [JKT09].
3r is called the Poincaré rank of an irregular singular point. When r = 0, the singular point is
Fuchsian.
4Up to a conjugation by a non-singular matrix G € Mat,, (A).

P rorm(X) = F(X) D(X) exp (i LT A" +1n(N) T0> as A — o0. (7)
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The proposition generalizes Proposition 2.2 in [JMS&I] to the non-commutative case,
whose particular case was discussed in the paper [BCRI§|. As a result, the formal solutions
of the HTW- and JM-types near infinity were constructed.

Regarding the case of the P9 system, the monodromy surfaces related to the FNy and
JMY pairs are given in the following

Proposition 4. Letx;, 7 = 1,2,3, and q belong to A, and o, 0 € C. Then the monodromy
surfaces related to the FNy and JMY pairs are given by the equations

Ty Ty T3+ Ty + 19 + 23 — 28in(w0) ¢! =0, (8)
T2y w3 — 11 — 2o (q?) — 23+ (1+0a)¢* =0, (9)

respectively.

In the commutative setting, ¢ = 1 and, thus, the relations above become the well-
known affine cubics for the second Painlevé equation. Note also that in the commutative
case these equations are equivalent by a simple scaling that cannot be generalized to
the non-abelian setting. Regarding the remaining systems Pj and P3, the monodromy
data are not isomonodromic and, thus, we cannot parameterize their solutions by the
Stokes multipliers. But, in fact, one can ask about a gauge-transformation that makes
the monodromy data isomonodromic. As far as we know, such a transformation does not
exist.
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